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Abstract —A typicaf method for designing a predistortion finearizer is to

reafize a circuit that creates an AM/AM and AM/PM characteristic

inverse to that of the power mrspfifier to be linearized [1]- [3]. This strategy

is correct only if the predistortion circuit maintains this characteristic also

at signaf envelope frequencies. Tlsis is often not true due to the time

constants present in the Iinearizer circuits that limit its effectiveness

(hereafter these effects are ~eferr~ as memory effects). This problem is

not limited to linearization techniques but affects the operation of nordin-

ear systems in generaf. The purpQse of this pa~r is to review the major

consequences of memory effects, to present efficient tecfudques to mea-

sure them, and to illustrate a simulation approach that can be used to

predict their influence iu practicaf systems.

I. THEORETICAL BACKGROUND

I N GENERAL a nonlinear memoryless system may only

cause an amplitude, never a phase, distortion. If a phase

distortion is present, the system must possess a certain

amount of memory [4]. Nonlinear systems with a small

memory (in the” sense that the circuit time ccmstWts are

much smaller than the reciprocal value of the maximum

envelope frequency) can be considered as quasi-memory-

less systems. In this case at a certain instant the amount of

amplitude and phase distortion depends only on the input

signal level at the same time instant. Therefore most of the

quasi-memoryless systems can be modeled only by their

~i./~Out characteristics (AM/AM conversion) and their
amplitude-dependent phase shift characteristic (AM/PM

conversion) [5].

For systems with larger memory, however, the AM/AM

and AM/PM characteristics do not contain complete in-

formation about the nonlinearity, so the accuracy of this

model is reduced. A precise characterization and simula-

tion require more complex describing techniques, for ex-

ample, the use of Volteva series representation [6] (see

Fig. 1).

II. ~XPERIMENTAL RESULTS ON A LINEARIZED

:-BAND POWER AMPLIFIER

The following example illustrates clearly the effects of

memory in a 20 W power amplifier utilizing bipolar de-

vices and linearized by means of a predistorting network.

Figs. 2 and 3 show the characteristics of the nonlirtearized
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Fig. 2. Experimental results: AM/AM characteristic of a nonlinearized
and a linearized amplifier.

~d the linearized amplifier. Even though the AM/AM

and AM/PM characteristics of the linearized amplifier

appear much more linear (the gain compression of the

linearized amplifier has been reduced by 3’ dB), the two-

carrier intermodulaticm test does not show any improve-

ment compared to the nonlinearized power amplifier

(Fig. 4).

This is a typical consequence of the presence of a

nonnegligible memory in this system. In fact, even though

the amplifier is statically linearized, its characteristics

change with envelope frequencie~. Therefore, if memory is

present, the dynamic behavior of a linearized amplifier

could be far from linear.

0018-9480/89/1200-1885 $01.00 01989 IEEE



1886 lEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES, VOL. 37, NO. 12, DECBMBER 1989

Amplitude

Gain

I dB/dw

Phase

lde.?ldlv

@

/i
---- PA

gain compression

hneanzed PA

— kteatrzed PA -

1
- — F = === —~ —

PA \- /

2dB/dw Input Power (dBm) ~

power sweep turre = 1sec

Fig. 3. AM/AM and AM/PM characteristics of a nonlinearized and a

linearized amplifier.
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Fig. 4. Intermodulation measurement of the nonlinearized and the stat-

ically linearized amplifier with memory.

III. NEW DYNAMIC AM/AM AND AM/PM

MEASUREMENT TECHNIQUE

A single-carrier power sweep measurement is very help-
ful during the design of power amplifiers. It also aids in

adjusting linearizing circuits, but as the previous example

illustrates, it does not provide any information about the

system’s memory and therefore significant differences may

result between predicted and measured performance. On

the other hand, performing a two-carrier measurement,

which provides the memory information, does not directly

give information about the AM/AM and AM/PM charac-

teristics of the system; therefore it is not very useful in

optimizing a linearize characteristic on the bench.

Fig. 5 shows a schematic of a new dynamic power sweep

measurement which combines both advantages [7]. The

input signal is a two-carrier signal, which is swept over

power. During the power sweep both carriers are synchro-

nized; hence their amplitude is equal all the time. By

means of two network analyzers (NWA’S) the amplitude

distortion and phase distortion of both of these carriers are

measured.
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Fig. 5. Dynamic AM/AM and AM/PM measurement setup (dynamic

power sweep).
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Fig. 6. Dynamic AM/AM and AM/PM measurement of an amplifier

with memory effects.

Compared to a traditional power sweep measurement

performed with one carrier, the envelope of the input

signal vanes with the two-carrier frequency separation

(“delta f” in Fig. 5) and the AM/AM and AM/PM

characteristics are measured dynamically (1):

A*[cos((J, *f)+cos((.J2 *f)]

=2 A*cos[(ul– tiJ/2*t] *cos[(cJ1+@2)/2*t]

where the modulation frequency, ti~, is given by

am = 6)— 6+. (1)

Fig. 6 illustrates an amplifier with a nonnegligible mem-

ory. Clearly there is a “resonance frequency,” where the

compression and the phase characteristics are strongly

dependent on the modulation frequency.

By changing the values of some blocking capacitors and

inductors in the biasing circuit, the memory effects of this

amplifier have been reduced. Fig. 7 shows the characteris-

tic of the improved amplifier, which is clearly demon-

strated by this technique to be quasi-memoryless and thus

well behaved at all modulation frequencies. Such an ampli-

fier can be successfully described by a traditional AM/AM

and AM/PM measurement.
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Fig. 8. Dynamic measurement in the frequency domain of an amplifier
with memory.

Utilizing the same measurement setup but operating the

amplifier at constant input power, we can also monitor
with a NWA the amplitude and the phase of one carrier

while sweeping the other carrier over frequency. In this

way the changes in compression and phase are measured

as a function of different envelope frequencies at a certain

signal power level.

Fig. 8 gives a typical example of an amplifier with

memory. The fixed carrier is located in the center of the

plot. The traces show the change in compression (phase) of

both the fixed and the swept carrier over envelope modula-

tion frequency. Clearly, a resonance effect can be seen at a

modulation frequency of about 14 MHz.

On the other hand, Fig. 9 illustrates the measurement

results of an improved amplifier, where the memory effects

have been removed.
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Fig. 9. Comparison of an amplifier WI th and without memory effects
(dynamic measurement in the frequency domain).

EE1-+El-lE+zi?r r
E@ @

‘z-Q-
. no lower hrnlt of modulation frequency

B

● detection of long time constants

Fig. 10. Pulse power measurement setup.

By monitoring the memory effects in real time, the

predistorter and the amplifier (especially their biasing net-

works) can easily be tuned to reduce the memory effects.

IV. PULSE POWER MEASUREMENT SYSTEM

This alternative system has the advantage of allowing

the detection of very long time constant memories such as

those caused by thermal effects or long time constants in

biasing circuits, which are not clearly shown by the system

previously described, In fact, the lmeasurement setup shown

in the previous section has a lower limit in the modulation

frequency determined by the IF of the NWA.

Fig. 10 shows the basic measurement setup. The input

signal is pulse modulated and drives the nonlinear system

under test. The degraded output signal is detected by a

tide-band power detector and visualized on an oscillo-

sco~e. In order to avoid overla~pping of different pulse

distorting effects, the pulse rise time has to be well selected

between the lower limit, the smallest time constant of the

memory to be detected, and the upper limit, the reciprocal

value of the RF bandwidth of the amplifier and the

detector system. A value of 0.5 ps has been used in the

tests performed.
Measurement curves are reported in Fig. 11, where a

significant long time constant memory is shown. Some

kind of overshooting is visible, where in the first moment

the amplifier delivers more output power than after several

microseconds. In this particular case the amplifier operates
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Fig. 12. Typical location of memory effects in the biasing circuit of

bipolar and FET amplifiers.

“more linearly” for higher modulation frequencies. Taking

into account the pulse distortion due to the bandwidth

limitations of the NWA, the system described in this

section is presently being modified to perform power swept

measurements.

V. TYPICAL LOCATION OF MEMORY EFFECTS

The large-time-constant memory effects are typically

due to the thermal time constants of the devices and to

some of the components in the biasing circuit. Especially

for bipolar devices, the structure of the biasing network

(regulation of the base current as a function of the collec-
tor current) has an inherent time delay and causes long-

time-constant memory effects. This effect is normally not

present in FET amplifiers due to the more simplified

biasing schemes and in particular to the absence of feed-

back loops.

The parasitic of the blocking coil and the resonance

frequency of the blocking capacitor, as well as a proper

grounding, are important parameters in reducing trouble-

some short-time memory effects.

Fig. 12 illustrates the most sensitive parts leading to

memory effects in a widely used biasing circuit for bipolar

amplifiers in comparison to FET amplifiers.
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Fig. 13. Schematic of the extended computer model to simulate nonlin-

ear systems with memory.

VI. COMPUTER SIMULATION OF

NONLINEAR AMPLIFIERS

Starting with the measured single-carrier AM/AM and

AM/PM characteristics of a nonlinear amplifier, together

with the associated efficiency, the intermodulation prod-

ucts generated by a multicarrier input signal, the average

efficiency, and the output power characteristic have been

calculated for several amplifiers by means of a software

package recently developed at ESTEC [8].

Since we are only interested in the intermodulation

products falling within the transmission band of interest,

the bandpass input signal is down-converted to a complex

low-pass equivalent (2) and distorted by means of the

measured and tabulated AM/AM and AM/PM data (see

Fig. 13(a)).

Bandpass signal:

xBp(t)= R(t)* cos(@c *t++(t)).

Quadrature components:

u,(t) =R(t)*cos (@(t))

u~(t)=R(t) *sin($(t)).

Complex low-pass equivalent:

x~P(t)=l/2* R(t)* exp(j *$(t)). (2)

Performing an FFT, the distorted spectrum of the output

signal and the C/I have been computed.

Referring to the first section of this paper, only quasi-

memoryless systems can be analyzed and simulated with

this computer model. In order to introduce memory ef-
fects, the model has been extended such that the envelope

of the input signal is detected, filtered, delayed, and finally

used as a controlling parameter to a set of different nonlin-

ear transfer characteristics, previously measured for differ-

ent operating points of the amplifier (Fig. 13(b)).

Now the nonlinear transfer characteristic (AM/AM and

AM/PM conversion) is represented by a complex two-

dimensional matrix with the input power and the operating

point as input parameters and the output power and the

phase as output parameters. For each sampling point of

the input signal, the corresponding operating points and

the amount of distortion can be calculated.
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Fig. 14. Computed pulse response of a bipolar amplifier with memory.

With this extended computer model, systems with mem-

ory can be simulated, and in particular, different biasing

schemes and their memory effects can be analyzed. This

capability can be applied, for example, to adaptive biasing

amplifiers, where the biasing point of the active device is

changed according to the input signal level. In general, the

effects of feedback biasing circuits can also be predicted

for different values of envelope frequencies.

Fig, 14, for example, shows the computed response of an

amplifier using a constant current (feedback) biasing net-

work for the bipolar power devices whose measured char-

acteristics are reported in Fig. 11. Comparing the two

figures, it is evident that good agreement is found over a

wide dynamic range.

VII. ADAPTIVE LINEARIZATION TECHNIQUES

By controlling the operating point of an amplifier ac-

cording to the input signal envelope, the amplifier can be

operated at constant gain, and thus the transfer character-

istic can be linearized. In order to keep the characteristic

linearized even under dynamic operation, the bandwidth

of the controlling circuit should be far wider than the

maximum modulation frequency.

Utilizing again the model of Fig. 13(b), the degradation

in C/I due to the band limitations and time delays in the

biasing network has been calculated. The amplifier’s trans-

fer characteristic at several operating points and the lin-

earized characteristic in the ideal, memoryless case (no

filtering and delaying) are illustrated in Fig. 15.

Introducing a time delay in the biasing circuit of only

10°, which corresponds to a 3 dB bandwidth of more than

five times the maximum modulation frequency (in a simple

RC section), the transfer characteristic shows a hysteresis

(Fig. 16). For increasing input signal power the curve is

undercompensated, and for decreasing values it is over-
compensated (due to the time delay).

Fig. 17 shows the calculated third-order C/I with’ a

two-carrier input signal as a function of different time

delays in the biasing circuit. From this figure it appears

that some improvement in C/I in the saturated region is
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achieved, but the linearity in the back-off region is reduced

and the C/I degraded to about 25 dB.

These simulation results are in agreement with the inter-

modulation behavior in a practical adaptive biasing system

(Dynamically Efficient Bias Scheme, DEBS, developed by

Marconi Space Systems/Watford U.K., ESTEC contr.

5416/83/NL/GM), which is illustrated in Fig. 18. The

improvement of the C/I in the saturated region without

DEBS is due to cancellation effects inside the amplifier

and not related to the memory of the system.

VIII. CONCLUSIONS

Detrimental effects of memories in linearizes have been

described and two different, efficient techniques have been

presented to measure them. These techniques allow a

“real-time” adjustment and correction of the linearize

and/or amplifier circuits and an overall improvement of

the intermodulation performance over a wide envelope

frequency band.

This is especially important for broad-band applica-

tions, where high efficiency and linearity are required, and

where memory effects, if not detected and properly cor-

rected, may significantly degrade the system’s perfor-

mance.

Predistortion linearization in the presence of strong

memory effects becomes extremely complex, if not impos-

sible. In fact the compensation of the amplifier nonlineari-

ties (amplitude and phase) is significantly affected and

limited by the time delay characteristics of the system. A

good knowledge of memory effects and of ways to detect

and reduce them is also of extreme interest when alterna-

tive linearization methods are considered, such as adaptive

biasing or loading techniques.

The simulation approach has proved to be useful in

predicting the nonlinear response of practical systems with

significant memory.
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